Спросите итана №82: почему все планеты находятся в одной плоскости?

Фактор, отвечающий за смену времен года

За сезонность на планетах Солнечной системы отвечает угол наклона оси вращения к орбите. Чем меньше угол, тем стабильнее погода на небесном теле и нет смены пор года. Также сезонности не бывает на небесных телах с углом наклона более 90°.

Смена сезонов характерна для объектов с углом наклона оси в пределах 20-30 градусов:

  • Земля (23,3°);
  • Марс (25,2°);
  • Сатурн (29°);
  • Нептун (30°).

«Лето» и «зима» также есть на Меркурии, несмотря на практически отсутствующий наклон оси. Это связано с высоким эксцентриситетом его орбиты. Разница между температурами в точках перигелия и афелия на Меркурии составляет 620 градусов Цельсия.

Таким образом, величина и форма пути, который описывает объект вокруг Солнца, очень влияют на формирование температурных условий на нём. Именно невысокий эксцентриситет и небольшая удаленность движения Земли, а также оптимальный угол наклона оси сделали её температуру наиболее комфортной для существования живых организмов.

Понятие орбиты

Итак, что такое орбита планеты? Самое простое определение: орбита — это путь тела вокруг Солнца. Тяготение вынуждает космическое тело двигаться по одному и тому
же пути вокруг звезды из года в год, из миллиона лет в следующий миллион. В среднем планеты имеют эллипсоидную орбиту. Чем ближе ее форма приближена к кругу,
тем стабильнее погодные условия на планете.

Основные характеристики орбиты – период обращения и радиус. Средний радиус – это средняя величина между минимальным значением диаметра орбиты и
максимальным. Период обращения – это тот отрезок времени, который необходим небесному телу для того, чтобы полностью пролететь вокруг звезды.Чем больше
расстояние, разделяющее звезду и планету, тем больше будет период обращения, поскольку воздействие гравитации звезды на окраине системы гораздо слабее, чем в ее центре.

Поскольку абсолютно круглой не может быть ни одна орбита, в течение планетарного года планета бывает на различном удалении от звезды. Место, где
планета ближе всего расположена к звезде, принято называть периастром. Точка, самая далекая от светила, напротив, именуется апоастром. Для Солнечной системы это
перигелий и афелий соответственно.

Первый закон Кеплера

Многолетние наблюдения Браге показали: Марс движется по орбите, но это не окружность. Пытаясь найти объяснения этому загадочному факту, Иоганн Кеплер пришел к первому своему закону: «Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце».

Тут стоит пояснить, что такое фокусы. Эллипс, как вы можете представить, это замкнутая прямая на плоскости. Он симметричен и содержит внутри две оси, проходящие через центр: большую и малую. Оси можно разделить на полуоси, исходящие из центра (это будет радиус орбиты). Если нарисовать на больших полуосях две точки на одинаковом расстоянии от центра, это и будут фокусы. При этом сумма расстояний отрезков от фокусов до любой точки эллипса является постоянной величиной.

Что такое орбитальная скорость?

Орбитой называют траекторию, по которой конкретная планета движется вокруг Солнца. Она вовсе не представляет собой идеальную окружность, как думают некоторые люди, не разбирающиеся в астрономии. Более того, она даже не слишком напоминает овал – ведь существует большое количество факторов за исключением силы притяжения Солнца, которые могут повлиять на движение небесных тел.

Также стоит сразу развеять другой известный миф – Солнце вовсе не всегда находится ровно в центре орбиты планет, вращающихся вокруг него.

Наконец, следует отметить, что не все орбиты планет лежат в одной плоскости. Некоторые значительно выбиваются из нее – например, если изобразить стандартные орбиты Земли и Венеры на астрономической карте, то можно убедиться в том, что они имеют всего несколько точек пересечения.

Теперь, когда с орбитами более или менее разобрались, можно вернуться к определению термина орбитальной скорости планет. Именно так астрономы называют скорость, с которой планета движется по своей траектории. Она может немного изменяться – в зависимости от того, какие небесные тела проходят поблизости. Особенно это заметно на примере Марса: каждый раз, когда он проходит в сравнительной близости от Юпитера, он немного замедляется, притягиваясь гравитационным полем этого гиганта.

Ученые давно установили зависимость скорости движения планет вокруг Солнца от расстояния до него.

То есть самая ближайшая к Солнцу планета – Меркурий – движется быстрее всего, в то время как скорость Плутона является самой маленькой в Солнечной системе.

С чем это связано?

Дело в том, что скорость каждой планеты соответствует той силе, с которой Солнце притягивает ее на определенном расстоянии. Если скорость будет меньше, то планета будет постепенно приближаться к звезде и в результате сгорит. Если же скорость слишком большая, то планета просто улетит от центра нашей Солнечной системы.

Каждый астроном, даже начинающий, прекрасно знает, что сила притяжения уменьшается по мере удаления от Солнца. Именно поэтому, чтобы сохранить свое место в Солнечной системе, Меркурий вынужден носиться с бешеной скоростью, Марс может двигаться помедленнее, а Плутон и вовсе едва перемещается.

Виды орбит

Орбиты делят на относительные и абсолютные.

Абсолютная орбита – это путь тела в установленной отсчетной системе, которую считают универсальной. Примером такой системы является Вселенная, взятая как единое целое.

Относительная орбита – это траектория тела в системе отсчета, которая движется по искривленной траектории с переменной скоростью. Например, при описании траектории искусственного спутника указывается его движение относительно планеты. В первом приближении – это эллиптическая траектория, в фокусе которой находится Земля, сама плоскость движения относительно звезд считается неподвижной. При таком варианте измерений, очевидно, что траектория движения – это орбита относительного типа, поскольку она определяется по отношению к Голубой планете, которая сама вращается вокруг Солнца. Если же посмотреть на траекторию движения относительно звезд, то наблюдается винтовая траектория – это абсолютная орбита искусственного спутника.

Характеристика Галактики Млечный путь

Наша Галактика Млечный путь относится к спиральным галактикам с перемычкой. Существует древнегреческая легенда, почему она получила именно такое название. Она рассказывает, что титан Кронос ел новорожденных детей, которых рожала ему Рея. Для матери это было большое горе. После смерти пятого ребенок, мать приняла решение уберечь своего последнего сына – Зевса. Вместо младенца, девушка принесла Кроносу завернутый в одеяльце камень. После того, как титан ощупал сверток, он попросил мать покормить ребенка, так как его вес был слишком мал. Рея брызнула на камень молоко, но оно от него отскочило, и расположилось на небе в виде млечного пути. Когда Зевс вырос, он сверг Кроноса и стал главным среди всех богов.

На сегодняшний день Млечный путь способен поглощать другие галактики. Вокруг галактического пространства расположились многочисленные звездные скопления, которые рано или поздно попадают под его влияние и с помощью гравитационных сил затягиваются в рукава. Специалисты заметили, что сейчас Млечный путь поглощает маленькую галактику, расположившуюся в созвездии Стрельца.

Однако такая особенность у Галактики скоро исчезнет. Сегодня уже наблюдается взаимодействие между Млечным путем и Галактикой Андромеды, которая в 1,5 раза больше него. По мнению великих умов через какое-то время произойдет столкновение двух галактических пространств и Андромеда поглотит Млечный путь.

Характеристика Галактики Млечный путь:

  • диаметр примерно 100 тысяч световых лет;
  • в составе от 200 до 400 миллиардов звезд;
  • звезда Солнце от центра Галактики Млечный путь отдалена на 27 тысяч световых лет;
  • скорость вращения Солнечной системы вокруг центра 230 км/с. Чтобы совершить полный оборот вокруг центра требуется 235 млн. лет;
  • в совокупности все объекты Млечного пути весят 1,5 триллиона солнечных масс.

Знакомясь с основными характеристиками Галактики, нужно учитывать, что из-за больших размеров, в некоторых расчетах могут быть погрешности.

Размеры и структура

Центральную часть Млечного пути занимает ядро, в составе которого насчитываются миллиарды звезд. Размеры ядра Галактики измерить очень сложно, ученые предполагают, что его протяженность несколько тысяч парсек (1 парсека – 30,86 трлн. км). В центре находится черная дыра. Считается, что через середину Млечного пути проходит перемычка. Ее протяженность оценивают в 27 световых лет. По отношению к нашему Солнцу она находится под углом 44. В составе Галактики преобладают звезды, пыль, газ, созвездия. Более молодые образования отдалены от его центральной части.

Вокруг Млечного пути сосредоточено гало. В нем располагаются звездные скопления и карликовые галактики. Эти образования удерживаются гравитационными силами галактического пространства и вращаются вокруг него. В структуру нашей Галактики входит пять основных рукавов – Лебедь, Центавр, Стрелец, Орион, Персей.

Не менее интересным будет узнать, каковы же размеры нашей Галактики. Проведенные расчеты и исследования говорят, что ее диаметр составляет 100 тыс. световых лет, а ширина 1 тыс. световых лет. Несколько лет назад великие умы Канарского института выдвинули предположение, что размер Галактики Млечный путь может составлять 200 тыс. световых лет. А в 2020 году астрофизики в результате своего нового исследования предположили, что длина диаметра может достигать 1 млн. 900 тыс. световых лет. Однако данные расчеты подтверждены не были и пока остаются только теорией.

Спиральные рукава

Рукав представляет собой элемент галактического пространства, в котором сосредоточена большая часть пыли, газа, молодые звезды и даже звездные скопления. Они являются постоянной зоной галактической системы. Рукава имеются только у спиральных галактик, поэтому их часто называют спиральными. Плюс ко всему их структура закрученная, чем-то похожа на спираль.

Как уже было отмечено, в структуре Галактики Млечный путь насчитывается 5 спиральных рукавов. Все свои названия они получили в честь созвездия, в пределах которого расположены, – Лебедь, Орион, Центавр, Стрелец и Персей. Самый большой интерес вызывает рукав Орион, так как именно в нем находится планета Земля и вся Солнечная система. Именно этот рукав изучен лучше всего, но далеко еще не полностью.

Орион является самым маленьким спиральным рукавом в Галактике. В длину он достигает 11 тыс. световых лет, в толщину – 3,5 тыс. Располагается он примерно между Стрельцом и Персеем.

Вращательное движение: перемещение, скорость и ускорение

Если вы привыкли решать задачи о прямолинейном движении типа “некто движется из пункта А в пункт Б”, то задачи о вращательном движении можно формулировать аналогично, но для этого нужно приобрести некоторый опыт. На рис. 7.1 мяч движется криволинейно по окружности, а не прямолинейно по линии. Это движение можно было бы описать как комбинацию прямолинейных движений с координатами X и Y. Однако гораздо удобнее характеризовать его иначе, а именно как вращательное движение с одной координатой ​\( \theta \)​. В данном примере вращательного движения перемещение можно характеризовать углом \( \theta \) так же, как в прямолинейном движении перемещение характеризуется расстоянием \( s \). (Более подробно перемещение при прямолинейном движении описывается в главе 3.)

Стандартной единицей измерения перемещения при вращательном движении является радиан (рад), а не градус. Полная окружность охватывает угол величиной ​\( 2\pi \)​ радиан, что равно 360°. Соответственно, половина окружности охватывает угол величиной ​\( \pi \)​ радиан, а четверть окружности — ​\( \pi/2 \)​.

Как преобразуются величины углов из градусов в радианы и обратно? Достаточно определить, сколько радиан приходится на один градус, т.е. вычислить отношение ​\( 2\pi \)​/360°. Например, величина угла 45° в радианах равна:

Аналогично, для преобразования величины угла из радианов в градусы следует определить, сколько градусов приходится на один радиан, т.е. вычислить отношение 360°/​\( 2\pi \)​. Например, величина угла ​\( \pi/2 \)​ в градусах равна:

Формулировка вращательного движения в терминах прямолинейного движения очень удобна. Напомним основные формулы прямолинейного движения, которые подробно описываются в главе 3:

Теперь для вывода аналогичных основных формул вращательного движения достаточно в формулах прямолинейного движения вместо расстояния ​\( s \)​, которое характеризует прямолинейное перемещение, подставить угол ​\( \theta \)​, который характеризует угловое перемещение. А как определяется угловая скорость? Очень просто. Угловая скорость ​\( \omega \)​ определяется аналогично, как изменение угла за единицу времени, и равна количеству радианов, пройденных за секунду:

Обратите внимание, как похоже это выражение для угловой скорости на выражение для линейной скорости:

Давайте теперь вычислим угловую скорость мяча на рис. 7.1. Он совершает полный круг, охватывающий ​\( 2\pi \)​ радиан, за 1/2 с, а значит, его угловая скорость равна:

(Величина угла, выраженная в радианах, равна отношению длины дуги окружности к длине ее радиуса. Поэтому радиан — это безразмерная величина, и ее обозначение (рад) часто опускается. Соответственно, угловую скорость принято указывать “в обратных секундах” как с-1, т.е. без указания единицы измерения углов. — Примеч. ред.)

Угловое ускорение ​\( \alpha \)​ определяется аналогично линейному ускорению:

Оно определяется как изменение угловой скорости за единицу времени и измеряется в радианах на секунду в квадрате. Если скорость за 2 с изменилась от величины ​\( 4\pi c^{-1} \)​ до величины \( 8\pi c^{-1} \), то чему равно угловое ускорение? Подставим эти численные значения в предыдущую формулу и получим:

Итак, для описания вращательного движения у нас есть следующие аналоги: для линейного перемещения ​\( s \)​ — угловое перемещение ​\( \theta \)​, для линейной скорости ​\( v \)​ — угловая скорость ​\( \omega \)​ и для линейного ускорения ​\( a \)​ — угловое ускорение ​\( \alpha \)​.

На основании этой аналогии можно легко вывести основные формулы вращательного движения (подобно основным формулам прямолинейного движения, которые подробно описываются в главе 3):

Более подробно эти выражения рассматриваются далее в главе 10 при описании момента импульса и момента силы.

50 интересных фактов о солнечной системе

  1. Юпитер считается самой большой планетой Солнечной системы.
  2. В Солнечной системе имеется 5 планет-карликов, одну из которых переквалифицировали в Плутон.
  3. Очень мало в Солнечной системе астероидов.
  4. Венера является самой горячей планетой Солнечной системы.
  5. Около 99% места(по объему) занимает Солнце в Солнечной системе.
  6. Одним из самый красивых и оригинальных мест Солнечной системы считается спутник Сатурна. Там можно заметить огромную концентрацию этана и жидкого метана.
  7. У нашей Солнечной системы есть хвост, напоминающий четырехлистный клевер.
  8. Солнце следует непрерывному 11-летнему циклу.
  9. В Солнечной системе насчитывается 8 планет.
  10. Полностью сформирована Солнечная система благодаря большому газопылевому облаку.
  11. Ко всем планетам Солнечной системы долетали космические аппараты.
  12. Венера является единственной планетой Солнечной системы, которая вращается против часовой стрелки вокруг своей оси.
  13. У Урана насчитывается 27 спутников.
  14. Самая большая гора — на Марсе.
  15. Огромная масса объектов Солнечной системы пришлась на Солнце.
  16. Солнечная система находится в составе галактики Млечный путь.
  17. Солнце – центральный объект солнечной системы.
  18. Часто Солнечную систему разделяют на регионы.
  19. Солнце является ключевым компонентом Солнечной системы.
  20. Примерно 4,5 миллиарда лет была образована Солнечная система.
  21. Самой далекой планетой Солнечной системы является Плутон.
  22. Две области в Солнечной системе заполнены малыми телами.
  23. Солнечная система построена вопреки всем законам Вселенной.
  24. Если сравнивать Солнечную систему и космос, то она в нем просто песчинка.
  25. За последние несколько столетий Солнечная система утратила 2 планеты: Вулкан и Плутон.
  26. Исследователи уверяют, что Солнечную систему создавали искусственным путем.
  27. Единственным спутником Солнечной системы, у которого плотная атмосфера и поверхность которого не удастся увидеть из-за облачного покрова – Титан.
  28. Область Солнечной системы, которая находится за орбитой Нептуна называется поясом Койпера.
  29. Облаком Оорта называется область Солнечной системы, которая служит источником кометы и длинного периода обращения.
  30. Каждый объект Солнечной системы держится там из-за силы притяжения.
  31. Ведущая теория Солнечной системы предполагает появление планет и спутников из огромного облака.
  32. Солнечная система считается самой тайной частицей Вселенной.
  33. В Солнечной системе есть огромный пояс астероидов.
  34. На Марсе можно видеть извержение самого большого вулкана Солнечной системы, который назван Олимп.
  35. Окраиной Солнечной системы считается Плутон.
  36. На Юпитере есть большой океан жидкой воды.
  37. Луна – крупнейший спутник Солнечной системы.
  38. Самым большим астероидом Солнечной систмы считается Паллада.
  39. Самая яркая планета Солнечной системы – Венера.
  40. В основном Солнечная система состоит из водорода.
  41. Земля является равноправным членом Солнечной системы.
  42. Солнце нагревается медленно.
  43. Как ни странно самые огромные запасы воды в Солнечной системе есть в солнце.
  44. Плоскость экватора каждой планеты Солнечной системы расходится с плоскостью орбиты.
  45. Спутник Марса с названием Фобос является аномалией Солнечной системы.
  46. Солненчая система может поражать собственным многообразием и масштабом.
  47. Планеты Солнечной системы подвергаются влиянию Солнца.
  48. Пристанищем спутников и газовых гигантов считается внешняя оболочка Солнечной системы.
  49. Огромное количество планетарных спутников Солнечной системы мертвы.
  50. Крупнейшим астероидом, диаметр которого 950 км, называется Церера.

Источники

  • http://www.7gy.ru/shkola/okruzhajuschii-mir/930-pro-planety-solnechnoj-sistemy-dlya-detej.htmlhttp://100-faktov.ru/50-interesnyx-faktov-pro-solnechnuyu-sistemu/

Первый закон Кеплера

В наших расчетах мы принимали что Земля равномерно движется по окружности. Хотя в реальности это не совсем так.

Иоганн Кеплер (1571 — 1630 гг).

Еще в начале XVII века немецкий астроном Иоганн Кеплер, опираясь на данные многолетних наблюдений за планетой Марс, полученные его учителем — датским астрономом Тихо Браге, заключил, что все планеты солнечной системы движутся не по окружности, а по эллипсу, в одном из фокусов которого находится Солнце. Этот закон называют первым законом Кеплера.

Все планеты Солнечной Системы движутся по эллипсу, в одном из фокусов которого находится Солнце.

Так что давайте разобраться что такое такое эллипс, и в чем его фокус.. или фокусы.

Что такое эллипс?

Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, большая чем расстояние между фокусами.

Рассмотрим все на простом примере. Берем шнурок с канцелярскими кнопками-гвоздиками на концах. Втыкаем кнопки в кусок гипсокартонна, который завалялся в гараже после ремонта.

Далее карандашом, опираясь на шнурок рисуем линии. Получившаяся фигура и есть эллипс, а точки куда мы втыкали кнопки называются фокусами.

Большая и малая полуось

Важными характеристиками эллипса являются его полуоси. Большая ее обычно обозначают латинской буквой «a», и малая, которую обозначают буквой «b». Тоже латинской.

Большая полуось — это расстояния от центра эллипса до самой дальней его точки. Соответственно, малая полуось — это расстояние от центра до самой ближней точки эллипса.

Эксцентриситет

Еще одна важная характеристика эллипса носит шикарное название — эксцентриситет. Его обычно обозначают буквой «е» и определяют как отношение фокусного расстояния эллипса (c) к большой полуоси (a).

Эллипс иногда называют сплющенной окружностью. Так вот эксцентриситет как раз показывает насколько эта окружность сплющена.

Для эллипса:

Чем ближе эксцентриситет к единице, тем более вытянутый эллипс мы получим. И наоборот эксцентриситет близкий к 0, будет иметь эллипс ну очень похожий на окружность. В принципе можно сказать что окружность это эллипс с е=0.

В солнечной системе самый маленький эксцентриситет у Венеры всего 0,007, то есть траектория ее движения это практически окружность. Эксцентриситет близкий к единице имеют кометы. К примеру у кометы Галея е=0,967.

Что же касается Земли, то эксцентриситет земной орбиты тоже очень близок к нулю, всего 0,017. Но тем не менее это не ноль. А это значит что расстояние от Земли до Солнца величина отнюдь не постоянная.

Афелий и перигелий

Точка в которой планета находится ближе всего к Солнцу называется перигелий. От греческого perihelion, “peri“ — рядом и “helios“ — Солнце. Противоположная перигелию точка называется афелий. Соответственно это точка где планета максимально удалена от светила.

Земля находится перигелии, начале января. Она приближается к Солнцу на расстояние в 147,1 миллионов километров. Афелий она проходит в начале июля, когда удаляется на 152,1 миллионов километров. Разница выходит около 5 миллионов километров.

Этим иногда объясняют то что зимы в северном полушарии менее суровые, нежели в южном. Все таки зимой мы чуть ближе к солнцу. С другой стороны так как земля получает меньше солнечной энергии в июле, лето в северном полушарии более прохладное.

Претенденты на звание карликовых планет

Претендентами на статус карликовой планеты считают те объекты, которые приближаются к ним по своим характеристикам. Одним из них является Седна. Некоторые астрономы уже перевели её в звание «карлика». Они считают, что у этого тела достаточно массы и яркости для приобретения сферической формы. Однако ЦМП до конца не принял данное решение. Главный контраргумент заключается в том, что она не «очистила» собственную траекторию движения от других тел.

Орбита Седны

В число претендентов входит Орк (90482) – крупное космическое тело из пояса Койпера. Его орбита схожа с орбитой Плутона. Орк располагается всегда с противоположной стороны от него. У него яркая поверхность, покрытая кристаллами льда, в котором присутствуют соединения метана и аммиака.

Орбита Орка 90482 относительно орбит планет Солнечной системы

На данный момент существует более 250 объектов, которые могут стать самостоятельными. Большинство из них имеет номерной знак без названия. Чтобы получить статус, они должны иметь все характеристики карликовых планет.

Плоскость орбиты

Точки любой орбиты всегда лежат в одной плоскости. Для Земли такая космическая «поверхность» называется эклиптикой, все остальные планеты системы движутся в плоскостях, близких к нашей.

Центральное светило тоже вращается вокруг своей оси, в том же направлении, что и все соседние планетарные объекты. Это косвенное доказательство того, что оно и все остальные тела системы образовались из единого газопылевого протооблака. Но одному явлению объяснение до сих пор не найдено: Солнце вращается с существенным отклонением от эклиптики. Не исключено, что в непосредственной близости от нас существуют крупные неоткрытые планеты, чье гравитационное воздействие так влияет на нашу звезду.

 Плоскость эклиптики — это плоскость обращения Земли вокруг Солнца (земной орбиты). Credit: spacegid.com.

Эклиптика участвует в оценке наклона оси небесного тела. Для нас он составляет 23°, что является причиной неравномерного годового нагрева южного и северного полушарий, когда Земля находится на разных участках орбиты и смены времен года.

Орбиты планет Солнечной системы раванда. Планета Девять могла сместить орбиты всех планет Солнечной системы

В новом совместном исследовании, проведенном Элизабет Бейли, а также Константином Батыгиным и Майком Брауном, открывшими Планету Девять, сообщается, что эта ревнивица могла сместить орбиты всех остальных восьми планет Солнечной системы.

В новом совместном исследовании, проведенном Элизабет Бейли, а также Константином Батыгиным и Майком Брауном, открывшими Планету Девять, сообщается, что эта ревнивица могла сместить орбиты всех остальных восьми планет Солнечной системы. Если она все же существует, то это может объяснить, почему планеты находятся не на одной линии с Солнцем.

Восемь основных планет до сих пор вращаются вокруг нашей звезды в исходной плоскости протопланетного диска, из которого они родились. Солнце также вращается вокруг совей оси, но что удивительно, ось наклонена под углом в 6 градусов относительно линии, перпендикулярной к плоскости планет.

Есть несколько теорий, объясняющих этот крен, в том числе проходящая мимо миллиарды лет назад звезда, или взаимодействие между магнитным полем Солнца и изначальным газопылевым диском, из которого родилась Солнечная система. Но они с трудом объясняют, почему ось вращения выровнена именно так по отношению к другим планетам.

Ранее Майкл Браун и Константин Батыгин из Калифорнийского технологического института (США) утверждали, что Планета Девять может нести ответственность за некоторые беспорядочные движения ледяных тел во внешней Солнечной системе. Новая же идея распространяется на орбиты всех основных планет.

«Мы считаем, что вновь открытая планета имеет значительный наклон, и если он существует, то она будет смещать орбиты других тел. Это части одной головоломки, которые, кажется, подходят друг к другу, и помимо этого, говорят в пользу существования Планеты Девять», – сказала Элизабет Бейли.

Далекая планета превосходит массу Земли в 5-20 раз и имеет дико эксцентричную орбиту. Эта удлиненная траектория позволяет предположить, что она когда-то была экзопланетой, похищенной Солнцем у другой звезды.

Если эта кража произошла достаточно рано, то ее гравитационное воздействие было бы достаточным, чтобы потянуть орбиты планет из выровненной с Солнцем плоскости. Планета Девять не могла сдвинуть Юпитер, Сатурн, Уран и Нептун по отдельности. Вся Солнечная система наклонилась целиком.

«Наклон девятой планеты, а не ее масса, является ключевым фактором. Если бы речь шла о массе, Юпитер был бы главным подозреваемым

Важно, что возмутитель спокойствия вне общей плоскости. Юпитер не может изменить свой собственный угол наклона», – прокомментировал Алессандро Морбиделли из Обсерватории Лазурного берега (Франция), пришедший к аналогичному выводу в своем независимом исследовании

Наклон Солнца все же не доказывает существование Планеты Девять. Для начала нам по-прежнему необходимо увидеть ее хотя бы в телескоп.

Планеты Солнечной системы. Стабильность системы

Обращение планет вокруг Солнца происходит в одном (прямом) направлении. Орбиты планет практически круговые, а их плоскости близки к плоскости Лапласа. Это основная плоскость Солнечной системы. Законам механики подчиняется наша жизнь, и Солнечная система не исключение. Планеты связаны друг с другом законом всемирного тяготения. Исходя из отсутствия трения в межзвёздном пространстве, можно уверенно предположить, что движение планет относительно друг друга не изменится. Во всяком случае, в ближайшие миллионолетия. Многие учёные пытались рассчитать будущее планет нашей системы. Но у всех – и даже у Эйнштейна – получалось одно: планеты солнечной системы будут стабильны всегда.

Плутон

Наконец, последняя планета в нашем списке. Точнее, даже не планета, а планетоид – недавно его вычеркнули из списка планет из-за малых размеров. Средний радиус составляет всего 1187 километров – даже у нашей Луны этот показатель 1737 километров. Тем не менее название у него довольно грозное – его присвоили в честь бога подземного царства мертвых у древних римлян.

В среднем расстояние от Плутона до Солнца составляет около 32 астрономических единиц. Это позволяет ему чувствовать себя в безопасности и двигаться со скоростью лишь 4,7 километра в секунду – на раскаленную звезду Плутон все равно не свалится. А вот, чтобы сделать полный оборот вокруг Солнца со столь огромным радиусом, эта крохотная планета тратит 248 земных лет.

Вокруг своей оси он вращается тоже очень медленно – на это уходит 152 земных часа или больше 6 суток.

К тому же эксцентриситет самый большой в Солнечной системе – 0,25. Поэтому Солнце находится далеко не в центре орбиты, а смещено почти на четверть.

Изучение Солнечной системы

Долгое время человечество было убеждено, что все звёзды и планеты вращаются вокруг Земли. Система мира с неподвижной Землёй в центре была разработана греческим учёным Птолемеем во 2 веке до нашей эры и просуществовала более полутора тысяч лет. 

В 1453 году польский астроном Николай Коперник доказал, что Земля, как и другие планеты (на тот момент их было известно шесть), вращаются вокруг Солнца. Однако вплоть до XVII века церковь считала это учение ересью и боролась с его последователями. 

Одним из них был итальянский монах Джордано Бруно. В 1584 году он опубликовал исследование, в котором утверждал, что Вселенная бесконечна, а Солнце подобно остальным звёздам, просто находится гораздо ближе к Земле. Бруно был схвачен инквизицией и приговорён к сожжению на костре как еретик. 

Другим последователем Коперника стал итальянский учёный Галилео Галилей. Он создал первый телескоп, который позволил увидеть кратеры Луны, пятна на Солнце, открыть четыре спутника Юпитера и установить, что планеты вращаются вокруг своей оси. Чтобы не повторить судьбу Бруно, Галилей был вынужден отречься от своих идей.

В XVII веке немецкий астроном Иоганн Кеплер открыл законы движения планет — ему удалось установить связь между скоростью вращения планеты и её расстоянием от Солнца. Его идеи воспринял знаменитый английский физик Исаак Ньютон, создатель теории всемирного тяготения. 

В XVIII—XIX веках открытия в области оптики позволили создать более мощные телескопы, которые позволили учёным узнать больше о солнечной системе. Были открыты планеты Уран и Нептун. 

В 1951 году Советский Союз вывел на орбиту Земли первый искусственный спутник. С этого момента началась Космическая эра — эпоха практического изучения солнечной системы. 

В 1961 году Юрий Гагарин стал первым человеком, побывавшем в космосе, а в 1969 году космический корабль «Аполлон-11» доставил людей на Луну. 

В 1970-х годах Советский Союз и США запустили несколько десятков аппаратов для исследования Марса, Венеры и Меркурия, а запущенные в 1980-х аппараты «Вояджер-1» и «Вояджер-2» позволили получить данные о дальних планетах — Юпитере, Сатурне, Уране, Нептуне и их спутниках. Большую роль в изучении солнечной системы сыграл вывод на орбиту Земли космического телескопа «Хаббл» в 1990 году. 

В нынешнем десятилетии космические агентства разных стран планируют пилотируемый полёт на Марс. Экспедиция на другую планету станет величайшим событием в истории освоения солнечной системы. И всё же пока человечество находится в самом начале пути изучения космоса.

Марс

Эта планета названа в честь грозного бога войны. По всем показателям Марс максимально приближен к Земле. Например, скорость планеты по орбите составляет 24 километра в секунду. Расстояние до Солнца – около 228 миллионов километров, из-за чего на поверхности большую часть времени довольно прохладно – только днем она прогревается до -5 градусов по Цельсию, а ночью здесь холодает до -87 градусов.

Зато сутки здесь практически равны земным – 24 часа и 40 минут. Для упрощения даже был придуман новый термин, обозначающий марсианские сутки – сол.

Так как расстояние до Солнца довольно большое, а траектория движения значительно длиннее, чем у Земли, год здесь длится довольно долго – целых 687 дней.

Эксцентриситет у планеты не слишком большой – около 0,09, поэтому орбиту можно считать условно круглой с Солнцем, расположенным почти в центре описываемой окружности.

Орбитальная плоскость

Орбиты всех планет воспринимают плоские фигуры, а не объемные, потому что они полностью пролегают в одной плоскости. Эта орбитальная плоскость называется эклиптика. Таким образом движется не только Земля, но и все остальные планеты Солнечной системы.

Земная ось вращения расположена не перпендикулярно эклиптике, как может показаться на первый взгляд. На самом деле она наклонена, причем под довольно большим углом – 230 градусов. Поэтому разные полушария планеты разогреты по-разному – на южном теплее, чем на севере. Из-за этого наклона оси вращения происходит и смена пор года.

Перигелий и афелий Земли

Орбита Земли может не всегда быть такой, как сейчас. Несмотря на том, что планета может двигаться вокруг звезды на протяжении всей своей жизни, ее движение не всегда должно быть одинаковым. Изучения орбиты нашей планеты продолжаются, и ученые предполагают, что она может изменить свое движение в будущем.

Для подробного изучения этого вопроса сейчас активно используют компьютерные модели, которые показывают сразу несколько вариантов развития Солнечной системы в будущем. Какой из них настанет, знает только время.

Расположение планет в Солнечной Системе. Краткая информация о планетах Солнечной системы

Количество планет в Солнечной системе – 8, и классифицируются они в порядке удаления от Солнца:

  • Внутренние планеты или планеты земной группы – Меркурий, Венера, Земля и Марс. Они состоят, в основном, из силикатов и металлов
  • Внешние планеты – Юпитер, Сатурн, Уран и Нептун – так называемые газовые гиганты. Они намного более массивны, чем планеты земной группы. Крупнейшие планеты Солнечной системы, Юпитер и Сатурн, состоят в основном, из водорода и гелия; меньшие газовые гиганты, Уран и Нептун, помимо водорода и гелия, содержат в составе своих атмосфер метан и угарный газ.

Рис. 1. Планеты Солнечной системы.

Список планет Солнечной системы по порядку от Солнца выглядит так: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун. Перечисляя планеты от большей к меньшей, этот порядок меняется. Самой крупной планетой является Юпитер, затем идут Сатурн, Уран, Нептун, Земля, Венера, Марс и, наконец, Меркурий.

Все планеты обращаются вокруг Солнца в одном направлении с вращением Солнца (против часовой стрелки, если смотреть со стороны северного полюса Солнца).

Самой большой угловой скоростью обладает Меркурий — он успевает совершить полный оборот вокруг Солнца всего за 88 земных суток. А для самой удаленной планеты — Нептуна — период обращения составляет 165 земных лет.

Большая часть планет вращается вокруг своей оси в ту же сторону, что и обращается вокруг Солнца. Исключения составляют Венера и Уран, причем Уран вращается практически «лежа на боку» (наклон оси около 90 градусов).

Последовательность расположения планет в Солнечной системе и их особенности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector